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About Me

● Author
● BSD pusher
● irremediable smartass



  

About You

● How many OpenSSH clients?
● How many PuTTY clients?

● name?
● your goals here?
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Security Warning

● SSH is a tool
● Tools can be used for good or evil
● SSH can help you save your company
● SSH can help you destroy your company
● MWL is not responsible for reasonable or 

unreasonable damages caused by your 
use/abuse of SSH



  

SSH Overview

● What is SSH?
● What is OpenSSH?
● SSH Servers

● OpenSSH – most popular
● SSH.com -- commercial

● SSH Clients
● OpenSSH – Unix-like
● PuTTY -- Windows



  

SSH Protocol Versions

● SSH-1, original SSH
● created in 1995 by one guy, Tatu Ylönen, for his 

own uses
● can be decrypted by packet sniffers
● do not use SSH-1

● SSH 1.3, 1.5, 1.99 = SSH-1
● SSH-2, modern SSH

● only use SSH-2



  

Encryption 101

● plain text = readable
● ciphertext = unreadable
● algorithm = method for transforming plaintext to 

ciphertext & back
● key = secret string used as algorithm seed



  

Encryption Algorithms

● Symmetric
● same method & key used to encrypt & decrypt
● A=1, B=2, etc
● Fast

● Asymmetric
● different methods to encrypt or decrypt
● one key for encryption
● different key for decryption
● slow



  

Public Key Encryption

● Asymmetric algorithm
● give one key away
● keep one key secret
● used for SSH, HTTPS, PGP, etc
● Many different asymmetric public key 

algorithms – RSA, DSA, Blowfish, etc
● Use recommended algorithms



  

How SSH Uses Encryption

● Public key for initial session setup
● Agree on temporary symmetric secret
● symmetric for most of session
● occasional rekeys



  

Cool Is Not Secure

● The algorithms used, and the order they are 
tried in, are chosen for a reason

● Do NOT change them



  

Configuration Files

● all in /etc/ssh

● ssh_config – host-wide client config
● ssh_host_*_key.pub – private keys
● ssh_host_*_key – public keys
● sshd_config – server config



  

The OpenSSH Server

● Included by default in any server OS at this 
conference

● Also available for Windows, via Cygwin, 
sshforwindows, etc.



  

Testing sshd

● /etc/ssh/sshd_config
● /usr/sbin/sshd -f sshd_config_test -p 222

● test alternate configuration

● /usr/sbin/sshd -f sshd_config_test -p 222 -ddd
● run in foreground
● one connection only
● useful for weird debugging



  

Config File Syntax

● Boring option-then-value syntax

#Port 22

#AddressFamily any

#ListenAddress 0.0.0.0

#ListenAddress ::



  

Network & Protocol Options

Port 22

AddressFamily any (inet | inet6)

ListenAddress 0.0.0.0 | ::

Protocol 2 – no excuses for your servers!



  

Banner & motd

● Banners appear before auth, but might not work 
for all clients & can interfere with automation

Banner /etc/ssh/ssh-banner

● motd always displays, after auth

PrintMotd yes



  

Verify clients against DNS

UseDNS yes

● makes sure forward & reverse DNS match
● subject to DNS attacks
● IPv6
● Conclusion: don't bother



  

Restricting Access by User or Group

● Processed in order listed in config file
● first-match basis
● {Deny,Allow}Users – user list
● {Deny,Allow}Groups – group list



  

Restrict by User or Group II

● Demo system:

wheel: mwlucas

staff: mwlucas, pkdick, jgballard

support: pkdick, mwlucas

billing: jgballard



  

Deny Billing People

● OK:

DenyUsers jgballard

● Better:

DenyGroup billing



  

Allow only admins

● Presence of an Allow* option tells sshd to deny 
logins by default

AllowGroups wheel



  

Deny one user in group

● Users and groups distributed via LDAP. One 
admin is forbidden access to this server.

DenyUsers pkdick

AllowGroups support



  

Automation

● rsync user from one machine

AllowUsers backup@192.0.2.0/25

AllowGroups support, wheel

● List hosts by network or hostname, but beware 
DNS



  

Wildcards

● ? matches exactly one character
● * matches zero or more characters

● *.blackhelicopters.org – any host

● ?????.blackhelicopters.org – matches 
sloth & wrath, not envy or gluttony.



  

Wildcards in Networks

● 192.0.2.1? - 192.0.2.10 through 192.0.2.19

● 192.0.2.* - any host in 192.0.2.0/24

● 192.0.2.0/24 – by netmask

● Separate multiple entries with commas.



  

Negation

● !*.blackhelicopters.org – everything 
that's not under this domain.

● Excludes blackhelicopters.org itself
● Best with exclusions
● !lust.blackhelicopters.org,*.blackhelicopters.org

● djm describes as "a little fiddly"



  

Conditional Configuration

● Match by user, group, network, etc
● Example, X11 forwarding

Match User mwlucas

X11 Forwarding Yes



  

More User Matches

Match Group wheel

X11Forwarding yes

Match User mwlucas,jgballard

X11Forwarding yes



  

Match by Host

Match Address 192.0.2.0/29, 192.0.2.64/27

X11Forwarding yes

Match Host *.blackhelicopters.org

X11Forwarding yes



  

Multiple Matches

Match Address 192.0.2.8 User mwlucas 

X11Forwarding yes



  

Permitted Matches

● Can only match on certain items
● see sshd_config(5) for full list
● In short, can change auth methods, chroot, 

access, key locations, maximums, etc.
● Cannot change things like UsePAM, 
ChallengeResponseAuthentication, etc.



  

Placing Matches

● All configuration that follows a Match belongs to 
that Match, until next Match or EOF.

● Place Matches at end



  

Sample Matches

X11Forwarding no

PasswordAuthentication no

…

Match Group wheel

     X11Forwarding yes

Match Address 192.0.2.0/29, 192.0.2.128/27

     PasswordAuthentication yes



  

Root SSH Access

● Do not allow logging in as root
● Use sudo, pfexec, other tools



  

Chrooting Users

● Useful for Web servers, other multi-user servers 
with individual cells

● Must populate chroot (varies by OS)
● set permissions on chroot
● create home dir for imprisoned user
● create device nodes
● install shell



  

Permissions & Directory

● chroot directory owned by root, just like system 
home dir

● User's $HOME from /etc/passwd relative to jail. 
If $HOME is /home/pkdick, and chroot is 
/prison/, directory is /prison/home/pkdick

● $HOME owned by user, contains dotfiles, etc
● static-linked shell



  

Device Nodes

● Varies by OS, devfs or MAKEDEV
● expect /dev/urandom, /dev/null, /dev/stderr, 

/dev/stdin, /dev/stdout, /dev/tty, /dev/zero



  

Assign chroot

● Specify user's root directory as the Chroot 
Directory. Dumps everyone together in one 
chroot.

ChrootDirectory /prison

● %h = user's home directory in /etc/passwd. 
Locks user into their own directory

ChrootDirectory %h



  

More chroot

● %u expands to username. Lots of unique users 
in shared chroot area.

ChrootDirectory /prison/home/%u



  

Choosing users

ChrootDirectory none

…

Match Group billing

   ChrootDirectory /prison/billing

● If most users chrooted, reverse & allow wheel 
shell



  

Protecting sshd

● Hail Mary Cloud
● privilege separation
● packet filter, TCP wrappers
● disable passwords, allow only keys
● change port?



  

Verifying Server Keys

● Long strings of text
● Many users dismiss verifying keys as 

impossible
● Is entirely possible, you can make it easier
● Automated distribution is best



  

Get the Server Fingerprint

# ssh-keygen -lf ssh_host_rsa_key.pub

2048 
99:8c:de:5d:59:b9:af:e7:ce:c6:20:92:9
4:e1:ce:04 
/etc/ssh/ssh_host_rsa_key.pub (RSA)

● Capture all keys to file
● Can also use ssh-keyscan, requires you verify 

all keys yourself



  

Make Keys Available

● Must get fingerprints to users
● access must be easy & secure
● easiest: secure Web site
● don't use email or unencrypted public site

● Later: how to do this for your users



  

Verifying Clients

● Both OpenSSH client & PuTTY present host 
key fingerprint for verification upon first 
connection



  

Changed Host Keys

● User gets a warning upon connection that the 
key has changed. Possibilities:
● Sysadmin oops!
● Client is wrong. Desktop security? Corrupt cache?
● Server upgrade? Get new fingerprint
● round-robin DNS?
● Intruder controls server

● DO NOT CONNECT UNTIL YOU KNOW WHY



  

SSH Clients

● How many PuTTY users in the room?
● How many OpenSSH client users in the room?



  

Debugging OpenSSH Client

● ssh -v hostname
● increase number of -vs for more detailed 

debugging
● actually read the output



  

ssh Configuration

● /etc/ssh/ssh_config – global
● $HOME/.ssh/ssh_config – individual
● Documented in ssh_config(5)
● Use alternate with -f filename
● All config options work in both
● Can use patterns just like sshd



  

Per-Server Configuration

Host *.blackhelicopters.org

Port 2222

● Matches 

ssh avarice.blackhelicopters.org

● does not match

ssh avarice

● Can also use IP, netmask, patterns



  

Changing Username

● on command line
$ ssh jerkface@server.customer.com

$ ssh -l jerkface server.customer.com

● In config file

Host server.customer.com server

  User jerkface



  

Changing Port

● On command line

$ ssh -p 2222 gluttony

● In config file

Host gluttony

   Port 2222



  

Options on Command Line

● Anything in ssh(1) can be specified on 
command line with -o

$ ssh -o BindAddress=192.0.2.5 gluttony

● You can use multiple -o

● Use the config file



  

Updating Host Key Cache

● Keys cached in $HOME/.ssh/known_hosts
● Update policy option: StrictHostKeyChecking 
● Only update by hand? Set to yes.
● Auto-add new hosts? Set to no. Daft.
● Ask user to verify, then add? Set to ask.



  

Hashing known_hosts

● Hash hostnames in known_hosts, so intruder 
doesn't know your network

HashKnownHosts yes

● Use ssh-keygen -H to hash unhashed entries



  

PuTTY Client

● Windows SSH, telnet, serial, rlogin <cough> 
client

● Download from 
http://www.chiark.greenend.org.uk/~sgtatham/putty/

● Not by the OpenSSH paranoids, still pretty 
good

● Download the full installer



  

Saving PuTTY Defaults

● Example: set default username
● Beneath "Connection," select "Data."
● In "auto-login," put username
● Save as Default Settings 



  

Saving PuTTY Sessions

● Add server hostname, protocol, port, etc.
● Enter session name
● click Save
● Can also save other settings, such as X11 

forwarding, as sessions, e.g., "dns1-x11"
● Saved defaults not propagate to saved 

sessions!



  

PuTTY Management

● Upper left hand corner drop-down menu.
● Useful tricks:

● Duplicate Session
● Saved Sessions
● New Sessions
● Change Settings



  

PuTTY Configuration

● In Windows Registry, under 
HKEY_CURRENT_USER\Software\SimonTatham

● Can copy from machine to machine
● Can distribute valid configs via Active Directory



  

Debugging PuTTY

● Event Log, in upper left drop-down menu
● serious debugging, use Session Log.

● Before opening new session, go to Session -> 
Logging

● Choose log type. I usually use All session output.
● Give directory and name for debug file



  

Copy Files over SSH

● FTP predates TCP/IP. It's an appalling protocol.
● apps like rsync travel over SSH
● Two SSH-based protocols, SFTP and SCP

● SCP: rcp with SSH backend. Basically 
unmaintained

● SFTP: newer copy program, maintained



  

SCP

● copies individual files
$ scp source-host:file dest-host:file

● Copy data1 to host server1:

$ scp data1 server1:

● Without the colon, I securely copy file data1 to 
local file server1. Probably not right.



  

SCP II

● Copy remote file to local:

$ scp data1:server1 .

● Change filename

$ scp data1 server1:data2

● Change location:

$ scp data1 server1:/tmp/



  

SCP III

● Change usernames

$ scp data1 jerkface@server1:

● Recursive scp

$ scp -rp /home/mwlucas server1:



  

SFTP

● More modern, interactive
● looks awfully like FTP

$ sftp server1

sftp> put data1

sftp> get data2

sftp> lcd /tmp

sftp> cd /var/db/postgres



  

Per-Host Configuration

● Both read ssh_config
● ssh command-line options don't always map to 

scp/sftp, e.g., use -P to change port



  

Windows SCP/SFTP

● Command-line apps like pscp.
● Use WinSCP for GUI app
● Free for personal use, restrictions to redistribute
● transparently switches between SFTP and SCP 

protocols depending on what server supports
● Looks like any other Windows app



  

WinSCP tips

● Import PuTTY key cache: Saved Sessions -> 
Tools->Import. 

● Turn off SSHv1: select SSH, set Preferred SSH 
protocol version to 2. Select Stored Sessions, 
then Save defaults...

● Defaults do not propagate to saved sessions
● Explorer-style window: Preferences, choose 

Explorer.



  

Configuring SCP/SFTP server

● For scp, scp(1) must be in default system 
$PATH.

● SFTP server bundled with sshd, activated with 
sshd_config
Subsystem sftp /usr/libexec/sftp-server

● Disabling only removes obvious file copy 
methods. If you're really concerned, chroot sftp 
users.



  

SFTP-Only Users

Match Group sftponly

  ChrootDirectory %h

  ForceCommand internal-sftp

  AllowTcpForwarding no



  

SSH Key Auth

● Passwords are a weak point in security
● Humans make really bad passwords
● one-time auth (OPIE) annoying
● two-factor auth annoying and introduces 

additional points of failure
● Give each user a keypair, encrypted with a 

passphrase



  

Passphrase

● Text string used to encrypt private key
● If private key is stolen, useless without 

passphrase
● Make passphrase too long to guess by brute 

force, too complex to guess, too long to 
shoulder-surf.

● Numbers, words, letters, symbols and space.



  
http://xkcd.com/936/



  

Good Passphrases

● Not a cliche, saying, or media catchphrase
● My passphrase from 1999:

● "Come closer, my darling child, but not too close, 
for I, too, cannot be trusted."

● It's a mingling of two different translations of 
Lautreamont's Maldoror (1868).

● I can still remember it, you'd have a hard time 
guessing it.

● I am not recommending you read the book.
● My current passphrase is longer & more obscure



  

Why Kill Passwords?

● Simple two-factor auth (passphrase & file)
● SSH-breaking clouds (Hail Mary)
● Shuts up smart SSH scanners



  

SSH Agents

● Typing passphrases is more annoying than 
typing passwords

● SSH agent takes the key file, accepts your 
passphrase, and stores decrypted private key in 
memory (never to disk)

● When you SSH to a host, SSH client asks 
agent for passphrase

● Type passphrase once, use it all day



  

Agent Risks

● Lock Your Desktop!
● Multiuser Machines
● Sysadmins



  

Install Public Key on Server

● $HOME/.ssh/authorized_keys
● Should be readable by everyone – it's public
● Should not be writable by anyone but you
● Use SCP/SFTP, not copy & paste
● ssh-copy-id



  

Create Keypair with OpenSSH

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key 
(/home/mwlucas/.ssh/id_rsa):

Enter passphrase (empty for no passphrase): ...

Enter same passphrase again: ...

Your identification has been saved in 
/home/mwlucas/.ssh/id_rsa.

Your public key has been saved in 
/home/mwlucas/.ssh/id_rsa.pub.

The key fingerprint is: ...



  

Using SSH Key for Auth

client$ ssh sloth

Enter passphrase for key 
'/home/mwlucas/.ssh/id_rsa': ...

sloth$ 



  

OpenSSH Agent

● Varies by desktop GUI, might Just Work
● Command-line:

$ ssh-agent /bin/tcsh

$ ssh-add

● XDM: use openssh-askpass
● startx: use command-line before starting GUI 

(WindowMaker), or maybe just ssh-add (cwm)



  

PuTTY User Auth Keys

● Use PuTTYgen, included with full install
● Very standard Windows GUI; start, click 

"Generate"
● 1024 bits is minimum, unless you're logging into 

a VAX
● Save generated key.
● Select Conversions -> Export OpenSSH Key.



  

Using Auth Keys w/PuTTY

● For first attempt, use key without agent
● On left side of PuTTY, select Connection -> 

SSH -> Auth. Give full path to private key file.
● Install key on server.
● Log in.
● Should be asked for passphrase.
● Do not save this session



  

PuTTY Agent: Pageant

● Select Add Key, browse to your key, select, 
enter passphrase

● Enter passphrase again. Eventually you'll get it 
right.

● SSH to your server
● PuTTY enable/disable agent: Connection -> 

SSH -> Auth, "Attempt Authentication using 
Pageant" checkbox



  

Pageant at Startup

● Add Pageant shortcut to Startup menu
● Edit Target field to add full path to private key.

"C:\Program 
Files\PuTTY\pageant.exe" 
"C:\Users\mwlucas\keys\work.ppk"



  

Key File Management

● One key per client machine
● Back up private keys to offline media



  

Disabling Passwords in sshd

● /etc/ssh/sshd_config

ChallengeResponseAuthentication no

PasswordAuthentication no

PubkeyAuthentication yes

UsePAM no



  

Selectively Allow Passwords

Match Address 192.0.2.0/24

  PasswordAuthentication yes



  

Agent Forwarding

● Servers only allowing login via key, good
● Must copy file from one server to another
● Don't want to copy private key to server
● Solution? Forward agent requests back to 

desktop
● Forwards requests through 

$SSH_AUTH_SOCK, back to client.



  

Agent Forwarding Risks

● Anyone who can access socket can access 
agent. 

● Do you trust root?
● Do you trust machine?



  

Enable Forwarding

● On server

AllowAgentForwarding yes

● in ssh

ForwardAgent yes

● in PuTTY
● Connection -> Data -> SSH->Auth.
● Under Authentication Parameters. 
● Forward Agent check box.



  

pam_ssh_agent_auth

● auto-auth sudo via your SSH agent
● in sudoers:

Defaults env_keep += "SSH_AUTH_SOCK",timestamp_timeout=0

● sudo PAM config:
auth sufficient \ 
/usr/local/lib/pam_ssh_agent_auth.so \ 
file=~/.ssh/authorized_keys

auth required pam_deny.so

account include system

session required pam_permit.so



  

Security Sensitive Topics

● SSH can act as arbitrary wrapper around other 
protocols

● Network admins love them
● Security managers hate them
● Which one is you?



  

X11 Forwarding

● Enable on server

X11Forwarding yes

● Enable X11 secure subset on client

ForwardX11 yes

● Enable all of X11 on client

ForwardX11Trusted yes

● Can enable per-host, per-user, etc.



  

Is X11 Forwarding Working?

● Check $DISPLAY

$ echo $DISPLAY

localhost:10.0

● Any other result = X not going over SSH!
● Test with xterm, xeyes, etc.



  

PuTTY X11 Forwarding

● Need X server
● Xming – X.org based – on sourceforge
● PuTTY X11 forwarding = X11Trusted
● On by default
● Connection -> SSH -> X11, first box is Enable 

X11 Forwarding
● Turn it off by default, on as needed



  

Port Forwarding

● Wrap arbitrary traffic inside SSH
● Drives corporate security admins insane, 

because users can bypass access controls
● Network and server guys love it, for the same 

reason
● Obey corporate security policy



  

Port Forwarding Types

● Local Port Forwarding
● grab a port on local machine
● attach to SSH server

● Remote Port Forwarding
● grab a port on remote machine
● attach to SSH client

● Dynamic Port Forwarding
● forward all traffic to server via SOCKS



  

Privileged Ports

● On Unix-like systems, ports below 1024 can 
only be bound by root.

● Affects port forwarding as well.
● Can forward to a privileges port, not just from.
● Can forward any port on Windows-like systems



  

Local Forwarding

● Attach local port to remote port
● Tunnel insecure protocol over SSH
$ ssh -L localIP:localport:remoteIP:remoteport host

● If no IP specified, attach to 127.0.0.1; can skip 
first colon in that case

● Can set permanently in ssh_config
LocalForward localIP:localport remoteIP:remoteport



  

ssh: tunnel HTTP over SSH

● connect port 80 on localhost to port 80 on 
server's localhost

● must run as root
$ sudo ssh -L 80:127.0.0.1:80 mwlucas@www

● Make /etc/hosts entry pointing host at 127.0.0.1
● To set permanently, use ssh_config entry
Match Host www

LocalForward localhost:8080 localhost:80



  

PuTTY: tunnel HTTP over SSH

● Select Connection->SSH->Tunnels
● Set "source port" to 80
● Set Destination to 127.0.0.1:80
● at the bottom, select Local
● To bind network-facing IP locally, select "Local 

ports accept connections from other hosts"



  

Remote Port Forwarding

● Attach remote port to local port
● Tunnel insecure protocol over SSH
$ ssh -R localIP:localport:remoteIP:remoteport host

● If no IP specified, attach to 127.0.0.1; can skip 
first colon in that case

● Can set permanently in ssh_config
RemoteForward localIP:localport remoteIP:remoteport



  

ssh: remote forward SSH

● connect port 2222 on server's localhost to port 
22 on client's localhost
$ sudo ssh -R 22:127.0.0.1:2222 mwlucas@www

● To set permanently, use ssh_config entry
Match Host www

RemoteForward localhost:2222 localhost:22



  

PuTTY: remote forward SSH

● Select Connection->SSH->Tunnels
● Set "source port" to 2222
● Set Destination to 127.0.0.1:22
● at the bottom, select Remote
● To bind network-facing IP on server, select 

"Local ports accept connections from other 
hosts"



  

Using Remote Forwarding

● Log into server
● SSH to port 2222
● will be connected to client's SSH daemon
● this is why security admins hate it



  

Dynamic Port Forwarding

● Attach local port to server
● Local port is SOCKS proxy
$ ssh -D localIP:localport server

● If no IP specified, attach to 127.0.0.1; can skip 
colon in that case

● Can set permanently in ssh_config

Host servername

  DynamicForward host:port



  

ssh: dynamic forwarding

● connect port 9999 on server's localhost to port 
22 on client's localhost
$ ssh -D 9999 www

● To set permanently, use ssh_config entry
Match Host www

RemoteForward workstation:9999



  

PuTTY Dynamic Forwarding

● Select Connection->SSH->Tunnels
● Set "source port" to 9999
● Leave Destination blank
● at the bottom, select Dynamic
● To bind network-facing IP on server, select 

"Local ports accept connections from other 
hosts"



  

Testing Dynamic Forwarding

● Configure Web browser to use SOCKS proxy 
on localhost, port 9999

● Browse out to Internet, bypassing company 
security policy

● Impact on company security
● an illicit SOCKS proxy in a secure environment will 

get you fired with prejudice.
● Or you can legitimately use dynamic forwarding to 

access your secure environment.
● Po-tay-to, po-tah-to



  

Choosing IP Addresses

● Bind to local address, only client or server can 
use the forwarding

● Bind to network-facing address, everyone can 
use it.



  

Host Key Distribution

● Your users cannot be trusted.
● You don't want to be bothered by dumb user 

questions
● If a user sees a warning, it should be scary
● Distribute pre-verified host keys to client 

machines solves all this



  

Gather Host Keys

● build your own known_hosts with all algorithms
ssh -o HostKeyAlgorithms=ssh-rsa server

ssh -o HostKeyAlgorithms=ssh-dss server

ssh -o HostKeyAlgorithms=ecdsa-sha2-nistp256 server



  

OpenSSH Host Key Distribution

● ssh checks /etc/ssh/ssh_known_hosts as well 
as $HOME/.ssh/known_hosts

● Automate distribution: rsync, puppet, whatever
● To revoke a key, put string @revoked in front of 

entry. User will see scary warning.



  

ssh_known_hosts vs known_hosts

● $HOME/.ssh/known_hosts checked before 
/etc/ssh/ssh_known_hosts

● Best to move known_hosts to 
known_hosts_personal

● Don't just erase; user might have legitimate 
keys not on your network



  

Distributing known_hosts for PuTTY

● kh2reg.py part of PuTTY distribution
$ hk2reg.py known_hosts > puttykids.reg

● install reg script via login script / AD



  

Limiting SSH

● keywords in authorized_keys can limit actions 
possible over SSH.

● authorized_keys contains single lines, each the 
contents of a key.pub file.

ssh-rsa AAAA......wC9 
mwlucas@blackhelicopters.org



  

Keywords in authorized_keys

● put limiting keywords at beginning of key
● command="/bin/whatever" – this key can only 

run this command

command="sudo ifconfig tun0 inet 
192.0.2.2 netmask 255.255.255.252" 
ssh-rsa...



  

Limiting Locations

● Restrict which IP addresses a key can be used 
from:

from="192.0.2.0/29" ssh-rsa AAAA....



  

Restrict Forwarding

● Kill various forwardings
● no-agent-forwarding
● no-port-forwarding
● no-X11-forwarding 

● Permit certain types of forwarding
● permitopen="127.0.0.1:25"



  

Keys for Automated Processes

● rsync, rsnapshot, nagios, etc, can use SSH 
transport

$ ssh-keygen -f nagios-key -N ''

● Have process use this key with -i flag:

$ ssh -i nagios-key server1



  

Limiting Automated Processes

● That which is not necessary is forbidden

command="dump /home > /backups/`date 
+s`.dump",from="192.0.2.8",no-agent-
forwarding,no-portforwarding,no-X11-
forwarding ssh-rsa AAAA......wC9 
mwlucas@blackhelicopters.org



  

Avoiding Root

● Use sudo(8) to avoid using root
● Sample /etc/sudoers entry

automation ALL=NOPASSWD: /bin/dump 
/home > /backups/`date +s`.dump



  

SSH VPN

● You can use SSH as a VPN
● Varies widely by operating system
● We don't have time to cover all of the options
● Don't do this if you have any other choice
● Sometimes, you have no other choice
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