

SSH Mastery

OpenSSH, PuTTY,
Tunnels and Keys

Michael W Lucas
http://www.MichaelWLucas.com

BSDCan 2012

About Me

● Author
● BSD pusher
● irremediable smartass

About You

● How many OpenSSH clients?
● How many PuTTY clients?

● name?
● your goals here?

Contents

● SSH Overview
● Encryption 101
● OpenSSH Server
● Host Key Verification
● SSH clients
● Copying Files over SSH
● SSH Keys
● X Forwarding

Contents II

● Port Forwarding
● Host Key Distribution
● Limiting OpenSSH
● OpenSSH VPNs

Security Warning

● SSH is a tool
● Tools can be used for good or evil
● SSH can help you save your company
● SSH can help you destroy your company
● MWL is not responsible for reasonable or

unreasonable damages caused by your
use/abuse of SSH

SSH Overview

● What is SSH?
● What is OpenSSH?
● SSH Servers

● OpenSSH – most popular
● SSH.com -- commercial

● SSH Clients
● OpenSSH – Unix-like
● PuTTY -- Windows

SSH Protocol Versions

● SSH-1, original SSH
● created in 1995 by one guy, Tatu Ylönen, for his

own uses
● can be decrypted by packet sniffers
● do not use SSH-1

● SSH 1.3, 1.5, 1.99 = SSH-1
● SSH-2, modern SSH

● only use SSH-2

Encryption 101

● plain text = readable
● ciphertext = unreadable
● algorithm = method for transforming plaintext to

ciphertext & back
● key = secret string used as algorithm seed

Encryption Algorithms

● Symmetric
● same method & key used to encrypt & decrypt
● A=1, B=2, etc
● Fast

● Asymmetric
● different methods to encrypt or decrypt
● one key for encryption
● different key for decryption
● slow

Public Key Encryption

● Asymmetric algorithm
● give one key away
● keep one key secret
● used for SSH, HTTPS, PGP, etc
● Many different asymmetric public key

algorithms – RSA, DSA, Blowfish, etc
● Use recommended algorithms

How SSH Uses Encryption

● Public key for initial session setup
● Agree on temporary symmetric secret
● symmetric for most of session
● occasional rekeys

Cool Is Not Secure

● The algorithms used, and the order they are
tried in, are chosen for a reason

● Do NOT change them

Configuration Files

● all in /etc/ssh

● ssh_config – host-wide client config
● ssh_host_*_key.pub – private keys
● ssh_host_*_key – public keys
● sshd_config – server config

The OpenSSH Server

● Included by default in any server OS at this
conference

● Also available for Windows, via Cygwin,
sshforwindows, etc.

Testing sshd

● /etc/ssh/sshd_config
● /usr/sbin/sshd -f sshd_config_test -p 222

● test alternate configuration

● /usr/sbin/sshd -f sshd_config_test -p 222 -ddd
● run in foreground
● one connection only
● useful for weird debugging

Config File Syntax

● Boring option-then-value syntax

#Port 22

#AddressFamily any

#ListenAddress 0.0.0.0

#ListenAddress ::

Network & Protocol Options

Port 22

AddressFamily any (inet | inet6)

ListenAddress 0.0.0.0 | ::

Protocol 2 – no excuses for your servers!

Banner & motd

● Banners appear before auth, but might not work
for all clients & can interfere with automation

Banner /etc/ssh/ssh-banner

● motd always displays, after auth

PrintMotd yes

Verify clients against DNS

UseDNS yes

● makes sure forward & reverse DNS match
● subject to DNS attacks
● IPv6
● Conclusion: don't bother

Restricting Access by User or Group

● Processed in order listed in config file
● first-match basis
● {Deny,Allow}Users – user list
● {Deny,Allow}Groups – group list

Restrict by User or Group II

● Demo system:

wheel: mwlucas

staff: mwlucas, pkdick, jgballard

support: pkdick, mwlucas

billing: jgballard

Deny Billing People

● OK:

DenyUsers jgballard

● Better:

DenyGroup billing

Allow only admins

● Presence of an Allow* option tells sshd to deny
logins by default

AllowGroups wheel

Deny one user in group

● Users and groups distributed via LDAP. One
admin is forbidden access to this server.

DenyUsers pkdick

AllowGroups support

Automation

● rsync user from one machine

AllowUsers backup@192.0.2.0/25

AllowGroups support, wheel

● List hosts by network or hostname, but beware
DNS

Wildcards

● ? matches exactly one character
● * matches zero or more characters

● *.blackhelicopters.org – any host

● ?????.blackhelicopters.org – matches
sloth & wrath, not envy or gluttony.

Wildcards in Networks

● 192.0.2.1? - 192.0.2.10 through 192.0.2.19

● 192.0.2.* - any host in 192.0.2.0/24

● 192.0.2.0/24 – by netmask

● Separate multiple entries with commas.

Negation

● !*.blackhelicopters.org – everything
that's not under this domain.

● Excludes blackhelicopters.org itself
● Best with exclusions
● !lust.blackhelicopters.org,*.blackhelicopters.org

● djm describes as "a little fiddly"

Conditional Configuration

● Match by user, group, network, etc
● Example, X11 forwarding

Match User mwlucas

X11 Forwarding Yes

More User Matches

Match Group wheel

X11Forwarding yes

Match User mwlucas,jgballard

X11Forwarding yes

Match by Host

Match Address 192.0.2.0/29, 192.0.2.64/27

X11Forwarding yes

Match Host *.blackhelicopters.org

X11Forwarding yes

Multiple Matches

Match Address 192.0.2.8 User mwlucas

X11Forwarding yes

Permitted Matches

● Can only match on certain items
● see sshd_config(5) for full list
● In short, can change auth methods, chroot,

access, key locations, maximums, etc.
● Cannot change things like UsePAM,
ChallengeResponseAuthentication, etc.

Placing Matches

● All configuration that follows a Match belongs to
that Match, until next Match or EOF.

● Place Matches at end

Sample Matches

X11Forwarding no

PasswordAuthentication no

…

Match Group wheel

 X11Forwarding yes

Match Address 192.0.2.0/29, 192.0.2.128/27

 PasswordAuthentication yes

Root SSH Access

● Do not allow logging in as root
● Use sudo, pfexec, other tools

Chrooting Users

● Useful for Web servers, other multi-user servers
with individual cells

● Must populate chroot (varies by OS)
● set permissions on chroot
● create home dir for imprisoned user
● create device nodes
● install shell

Permissions & Directory

● chroot directory owned by root, just like system
home dir

● User's $HOME from /etc/passwd relative to jail.
If $HOME is /home/pkdick, and chroot is
/prison/, directory is /prison/home/pkdick

● $HOME owned by user, contains dotfiles, etc
● static-linked shell

Device Nodes

● Varies by OS, devfs or MAKEDEV
● expect /dev/urandom, /dev/null, /dev/stderr,

/dev/stdin, /dev/stdout, /dev/tty, /dev/zero

Assign chroot

● Specify user's root directory as the Chroot
Directory. Dumps everyone together in one
chroot.

ChrootDirectory /prison

● %h = user's home directory in /etc/passwd.
Locks user into their own directory

ChrootDirectory %h

More chroot

● %u expands to username. Lots of unique users
in shared chroot area.

ChrootDirectory /prison/home/%u

Choosing users

ChrootDirectory none

…

Match Group billing

 ChrootDirectory /prison/billing

● If most users chrooted, reverse & allow wheel
shell

Protecting sshd

● Hail Mary Cloud
● privilege separation
● packet filter, TCP wrappers
● disable passwords, allow only keys
● change port?

Verifying Server Keys

● Long strings of text
● Many users dismiss verifying keys as

impossible
● Is entirely possible, you can make it easier
● Automated distribution is best

Get the Server Fingerprint

ssh-keygen -lf ssh_host_rsa_key.pub

2048
99:8c:de:5d:59:b9:af:e7:ce:c6:20:92:9
4:e1:ce:04
/etc/ssh/ssh_host_rsa_key.pub (RSA)

● Capture all keys to file
● Can also use ssh-keyscan, requires you verify

all keys yourself

Make Keys Available

● Must get fingerprints to users
● access must be easy & secure
● easiest: secure Web site
● don't use email or unencrypted public site

● Later: how to do this for your users

Verifying Clients

● Both OpenSSH client & PuTTY present host
key fingerprint for verification upon first
connection

Changed Host Keys

● User gets a warning upon connection that the
key has changed. Possibilities:
● Sysadmin oops!
● Client is wrong. Desktop security? Corrupt cache?
● Server upgrade? Get new fingerprint
● round-robin DNS?
● Intruder controls server

● DO NOT CONNECT UNTIL YOU KNOW WHY

SSH Clients

● How many PuTTY users in the room?
● How many OpenSSH client users in the room?

Debugging OpenSSH Client

● ssh -v hostname
● increase number of -vs for more detailed

debugging
● actually read the output

ssh Configuration

● /etc/ssh/ssh_config – global
● $HOME/.ssh/ssh_config – individual
● Documented in ssh_config(5)
● Use alternate with -f filename
● All config options work in both
● Can use patterns just like sshd

Per-Server Configuration

Host *.blackhelicopters.org

Port 2222

● Matches

ssh avarice.blackhelicopters.org

● does not match

ssh avarice

● Can also use IP, netmask, patterns

Changing Username

● on command line
$ ssh jerkface@server.customer.com

$ ssh -l jerkface server.customer.com

● In config file

Host server.customer.com server

 User jerkface

Changing Port

● On command line

$ ssh -p 2222 gluttony

● In config file

Host gluttony

 Port 2222

Options on Command Line

● Anything in ssh(1) can be specified on
command line with -o

$ ssh -o BindAddress=192.0.2.5 gluttony

● You can use multiple -o

● Use the config file

Updating Host Key Cache

● Keys cached in $HOME/.ssh/known_hosts
● Update policy option: StrictHostKeyChecking
● Only update by hand? Set to yes.
● Auto-add new hosts? Set to no. Daft.
● Ask user to verify, then add? Set to ask.

Hashing known_hosts

● Hash hostnames in known_hosts, so intruder
doesn't know your network

HashKnownHosts yes

● Use ssh-keygen -H to hash unhashed entries

PuTTY Client

● Windows SSH, telnet, serial, rlogin <cough>
client

● Download from
http://www.chiark.greenend.org.uk/~sgtatham/putty/

● Not by the OpenSSH paranoids, still pretty
good

● Download the full installer

Saving PuTTY Defaults

● Example: set default username
● Beneath "Connection," select "Data."
● In "auto-login," put username
● Save as Default Settings

Saving PuTTY Sessions

● Add server hostname, protocol, port, etc.
● Enter session name
● click Save
● Can also save other settings, such as X11

forwarding, as sessions, e.g., "dns1-x11"
● Saved defaults not propagate to saved

sessions!

PuTTY Management

● Upper left hand corner drop-down menu.
● Useful tricks:

● Duplicate Session
● Saved Sessions
● New Sessions
● Change Settings

PuTTY Configuration

● In Windows Registry, under
HKEY_CURRENT_USER\Software\SimonTatham

● Can copy from machine to machine
● Can distribute valid configs via Active Directory

Debugging PuTTY

● Event Log, in upper left drop-down menu
● serious debugging, use Session Log.

● Before opening new session, go to Session ->
Logging

● Choose log type. I usually use All session output.
● Give directory and name for debug file

Copy Files over SSH

● FTP predates TCP/IP. It's an appalling protocol.
● apps like rsync travel over SSH
● Two SSH-based protocols, SFTP and SCP

● SCP: rcp with SSH backend. Basically
unmaintained

● SFTP: newer copy program, maintained

SCP

● copies individual files
$ scp source-host:file dest-host:file

● Copy data1 to host server1:

$ scp data1 server1:

● Without the colon, I securely copy file data1 to
local file server1. Probably not right.

SCP II

● Copy remote file to local:

$ scp data1:server1 .

● Change filename

$ scp data1 server1:data2

● Change location:

$ scp data1 server1:/tmp/

SCP III

● Change usernames

$ scp data1 jerkface@server1:

● Recursive scp

$ scp -rp /home/mwlucas server1:

SFTP

● More modern, interactive
● looks awfully like FTP

$ sftp server1

sftp> put data1

sftp> get data2

sftp> lcd /tmp

sftp> cd /var/db/postgres

Per-Host Configuration

● Both read ssh_config
● ssh command-line options don't always map to

scp/sftp, e.g., use -P to change port

Windows SCP/SFTP

● Command-line apps like pscp.
● Use WinSCP for GUI app
● Free for personal use, restrictions to redistribute
● transparently switches between SFTP and SCP

protocols depending on what server supports
● Looks like any other Windows app

WinSCP tips

● Import PuTTY key cache: Saved Sessions ->
Tools->Import.

● Turn off SSHv1: select SSH, set Preferred SSH
protocol version to 2. Select Stored Sessions,
then Save defaults...

● Defaults do not propagate to saved sessions
● Explorer-style window: Preferences, choose

Explorer.

Configuring SCP/SFTP server

● For scp, scp(1) must be in default system
$PATH.

● SFTP server bundled with sshd, activated with
sshd_config
Subsystem sftp /usr/libexec/sftp-server

● Disabling only removes obvious file copy
methods. If you're really concerned, chroot sftp
users.

SFTP-Only Users

Match Group sftponly

 ChrootDirectory %h

 ForceCommand internal-sftp

 AllowTcpForwarding no

SSH Key Auth

● Passwords are a weak point in security
● Humans make really bad passwords
● one-time auth (OPIE) annoying
● two-factor auth annoying and introduces

additional points of failure
● Give each user a keypair, encrypted with a

passphrase

Passphrase

● Text string used to encrypt private key
● If private key is stolen, useless without

passphrase
● Make passphrase too long to guess by brute

force, too complex to guess, too long to
shoulder-surf.

● Numbers, words, letters, symbols and space.

http://xkcd.com/936/

Good Passphrases

● Not a cliche, saying, or media catchphrase
● My passphrase from 1999:

● "Come closer, my darling child, but not too close,
for I, too, cannot be trusted."

● It's a mingling of two different translations of
Lautreamont's Maldoror (1868).

● I can still remember it, you'd have a hard time
guessing it.

● I am not recommending you read the book.
● My current passphrase is longer & more obscure

Why Kill Passwords?

● Simple two-factor auth (passphrase & file)
● SSH-breaking clouds (Hail Mary)
● Shuts up smart SSH scanners

SSH Agents

● Typing passphrases is more annoying than
typing passwords

● SSH agent takes the key file, accepts your
passphrase, and stores decrypted private key in
memory (never to disk)

● When you SSH to a host, SSH client asks
agent for passphrase

● Type passphrase once, use it all day

Agent Risks

● Lock Your Desktop!
● Multiuser Machines
● Sysadmins

Install Public Key on Server

● $HOME/.ssh/authorized_keys
● Should be readable by everyone – it's public
● Should not be writable by anyone but you
● Use SCP/SFTP, not copy & paste
● ssh-copy-id

Create Keypair with OpenSSH

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key
(/home/mwlucas/.ssh/id_rsa):

Enter passphrase (empty for no passphrase): ...

Enter same passphrase again: ...

Your identification has been saved in
/home/mwlucas/.ssh/id_rsa.

Your public key has been saved in
/home/mwlucas/.ssh/id_rsa.pub.

The key fingerprint is: ...

Using SSH Key for Auth

client$ ssh sloth

Enter passphrase for key
'/home/mwlucas/.ssh/id_rsa': ...

sloth$

OpenSSH Agent

● Varies by desktop GUI, might Just Work
● Command-line:

$ ssh-agent /bin/tcsh

$ ssh-add

● XDM: use openssh-askpass
● startx: use command-line before starting GUI

(WindowMaker), or maybe just ssh-add (cwm)

PuTTY User Auth Keys

● Use PuTTYgen, included with full install
● Very standard Windows GUI; start, click

"Generate"
● 1024 bits is minimum, unless you're logging into

a VAX
● Save generated key.
● Select Conversions -> Export OpenSSH Key.

Using Auth Keys w/PuTTY

● For first attempt, use key without agent
● On left side of PuTTY, select Connection ->

SSH -> Auth. Give full path to private key file.
● Install key on server.
● Log in.
● Should be asked for passphrase.
● Do not save this session

PuTTY Agent: Pageant

● Select Add Key, browse to your key, select,
enter passphrase

● Enter passphrase again. Eventually you'll get it
right.

● SSH to your server
● PuTTY enable/disable agent: Connection ->

SSH -> Auth, "Attempt Authentication using
Pageant" checkbox

Pageant at Startup

● Add Pageant shortcut to Startup menu
● Edit Target field to add full path to private key.

"C:\Program
Files\PuTTY\pageant.exe"
"C:\Users\mwlucas\keys\work.ppk"

Key File Management

● One key per client machine
● Back up private keys to offline media

Disabling Passwords in sshd

● /etc/ssh/sshd_config

ChallengeResponseAuthentication no

PasswordAuthentication no

PubkeyAuthentication yes

UsePAM no

Selectively Allow Passwords

Match Address 192.0.2.0/24

 PasswordAuthentication yes

Agent Forwarding

● Servers only allowing login via key, good
● Must copy file from one server to another
● Don't want to copy private key to server
● Solution? Forward agent requests back to

desktop
● Forwards requests through

$SSH_AUTH_SOCK, back to client.

Agent Forwarding Risks

● Anyone who can access socket can access
agent.

● Do you trust root?
● Do you trust machine?

Enable Forwarding

● On server

AllowAgentForwarding yes

● in ssh

ForwardAgent yes

● in PuTTY
● Connection -> Data -> SSH->Auth.
● Under Authentication Parameters.
● Forward Agent check box.

pam_ssh_agent_auth

● auto-auth sudo via your SSH agent
● in sudoers:

Defaults env_keep += "SSH_AUTH_SOCK",timestamp_timeout=0

● sudo PAM config:
auth sufficient \
/usr/local/lib/pam_ssh_agent_auth.so \
file=~/.ssh/authorized_keys

auth required pam_deny.so

account include system

session required pam_permit.so

Security Sensitive Topics

● SSH can act as arbitrary wrapper around other
protocols

● Network admins love them
● Security managers hate them
● Which one is you?

X11 Forwarding

● Enable on server

X11Forwarding yes

● Enable X11 secure subset on client

ForwardX11 yes

● Enable all of X11 on client

ForwardX11Trusted yes

● Can enable per-host, per-user, etc.

Is X11 Forwarding Working?

● Check $DISPLAY

$ echo $DISPLAY

localhost:10.0

● Any other result = X not going over SSH!
● Test with xterm, xeyes, etc.

PuTTY X11 Forwarding

● Need X server
● Xming – X.org based – on sourceforge
● PuTTY X11 forwarding = X11Trusted
● On by default
● Connection -> SSH -> X11, first box is Enable

X11 Forwarding
● Turn it off by default, on as needed

Port Forwarding

● Wrap arbitrary traffic inside SSH
● Drives corporate security admins insane,

because users can bypass access controls
● Network and server guys love it, for the same

reason
● Obey corporate security policy

Port Forwarding Types

● Local Port Forwarding
● grab a port on local machine
● attach to SSH server

● Remote Port Forwarding
● grab a port on remote machine
● attach to SSH client

● Dynamic Port Forwarding
● forward all traffic to server via SOCKS

Privileged Ports

● On Unix-like systems, ports below 1024 can
only be bound by root.

● Affects port forwarding as well.
● Can forward to a privileges port, not just from.
● Can forward any port on Windows-like systems

Local Forwarding

● Attach local port to remote port
● Tunnel insecure protocol over SSH
$ ssh -L localIP:localport:remoteIP:remoteport host

● If no IP specified, attach to 127.0.0.1; can skip
first colon in that case

● Can set permanently in ssh_config
LocalForward localIP:localport remoteIP:remoteport

ssh: tunnel HTTP over SSH

● connect port 80 on localhost to port 80 on
server's localhost

● must run as root
$ sudo ssh -L 80:127.0.0.1:80 mwlucas@www

● Make /etc/hosts entry pointing host at 127.0.0.1
● To set permanently, use ssh_config entry
Match Host www

LocalForward localhost:8080 localhost:80

PuTTY: tunnel HTTP over SSH

● Select Connection->SSH->Tunnels
● Set "source port" to 80
● Set Destination to 127.0.0.1:80
● at the bottom, select Local
● To bind network-facing IP locally, select "Local

ports accept connections from other hosts"

Remote Port Forwarding

● Attach remote port to local port
● Tunnel insecure protocol over SSH
$ ssh -R localIP:localport:remoteIP:remoteport host

● If no IP specified, attach to 127.0.0.1; can skip
first colon in that case

● Can set permanently in ssh_config
RemoteForward localIP:localport remoteIP:remoteport

ssh: remote forward SSH

● connect port 2222 on server's localhost to port
22 on client's localhost
$ sudo ssh -R 22:127.0.0.1:2222 mwlucas@www

● To set permanently, use ssh_config entry
Match Host www

RemoteForward localhost:2222 localhost:22

PuTTY: remote forward SSH

● Select Connection->SSH->Tunnels
● Set "source port" to 2222
● Set Destination to 127.0.0.1:22
● at the bottom, select Remote
● To bind network-facing IP on server, select

"Local ports accept connections from other
hosts"

Using Remote Forwarding

● Log into server
● SSH to port 2222
● will be connected to client's SSH daemon
● this is why security admins hate it

Dynamic Port Forwarding

● Attach local port to server
● Local port is SOCKS proxy
$ ssh -D localIP:localport server

● If no IP specified, attach to 127.0.0.1; can skip
colon in that case

● Can set permanently in ssh_config

Host servername

 DynamicForward host:port

ssh: dynamic forwarding

● connect port 9999 on server's localhost to port
22 on client's localhost
$ ssh -D 9999 www

● To set permanently, use ssh_config entry
Match Host www

RemoteForward workstation:9999

PuTTY Dynamic Forwarding

● Select Connection->SSH->Tunnels
● Set "source port" to 9999
● Leave Destination blank
● at the bottom, select Dynamic
● To bind network-facing IP on server, select

"Local ports accept connections from other
hosts"

Testing Dynamic Forwarding

● Configure Web browser to use SOCKS proxy
on localhost, port 9999

● Browse out to Internet, bypassing company
security policy

● Impact on company security
● an illicit SOCKS proxy in a secure environment will

get you fired with prejudice.
● Or you can legitimately use dynamic forwarding to

access your secure environment.
● Po-tay-to, po-tah-to

Choosing IP Addresses

● Bind to local address, only client or server can
use the forwarding

● Bind to network-facing address, everyone can
use it.

Host Key Distribution

● Your users cannot be trusted.
● You don't want to be bothered by dumb user

questions
● If a user sees a warning, it should be scary
● Distribute pre-verified host keys to client

machines solves all this

Gather Host Keys

● build your own known_hosts with all algorithms
ssh -o HostKeyAlgorithms=ssh-rsa server

ssh -o HostKeyAlgorithms=ssh-dss server

ssh -o HostKeyAlgorithms=ecdsa-sha2-nistp256 server

OpenSSH Host Key Distribution

● ssh checks /etc/ssh/ssh_known_hosts as well
as $HOME/.ssh/known_hosts

● Automate distribution: rsync, puppet, whatever
● To revoke a key, put string @revoked in front of

entry. User will see scary warning.

ssh_known_hosts vs known_hosts

● $HOME/.ssh/known_hosts checked before
/etc/ssh/ssh_known_hosts

● Best to move known_hosts to
known_hosts_personal

● Don't just erase; user might have legitimate
keys not on your network

Distributing known_hosts for PuTTY

● kh2reg.py part of PuTTY distribution
$ hk2reg.py known_hosts > puttykids.reg

● install reg script via login script / AD

Limiting SSH

● keywords in authorized_keys can limit actions
possible over SSH.

● authorized_keys contains single lines, each the
contents of a key.pub file.

ssh-rsa AAAA......wC9
mwlucas@blackhelicopters.org

Keywords in authorized_keys

● put limiting keywords at beginning of key
● command="/bin/whatever" – this key can only

run this command

command="sudo ifconfig tun0 inet
192.0.2.2 netmask 255.255.255.252"
ssh-rsa...

Limiting Locations

● Restrict which IP addresses a key can be used
from:

from="192.0.2.0/29" ssh-rsa AAAA....

Restrict Forwarding

● Kill various forwardings
● no-agent-forwarding
● no-port-forwarding
● no-X11-forwarding

● Permit certain types of forwarding
● permitopen="127.0.0.1:25"

Keys for Automated Processes

● rsync, rsnapshot, nagios, etc, can use SSH
transport

$ ssh-keygen -f nagios-key -N ''

● Have process use this key with -i flag:

$ ssh -i nagios-key server1

Limiting Automated Processes

● That which is not necessary is forbidden

command="dump /home > /backups/`date
+s`.dump",from="192.0.2.8",no-agent-
forwarding,no-portforwarding,no-X11-
forwarding ssh-rsa AAAA......wC9
mwlucas@blackhelicopters.org

Avoiding Root

● Use sudo(8) to avoid using root
● Sample /etc/sudoers entry

automation ALL=NOPASSWD: /bin/dump
/home > /backups/`date +s`.dump

SSH VPN

● You can use SSH as a VPN
● Varies widely by operating system
● We don't have time to cover all of the options
● Don't do this if you have any other choice
● Sometimes, you have no other choice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145

